Building Privacy-First Local AI Systems (mock blog post)
October 25, 2025 • 3 min read
Exploring the architecture and implementation of local AI assistants using ChromaDB, FastAPI, and Ollama for complete data privacy.

Building Privacy-First Local AI Systems
In an era where data privacy is paramount, building AI systems that run entirely on your local machine offers both security and control. This post explores the architecture behind Project Aeon, my local AI assistant that never sends your data to external servers.
The Privacy Problem
Traditional AI assistants like ChatGPT, Claude, and Gemini are powerful but come with privacy trade-offs:
- Your conversations are sent to external servers
- Data might be used for training (unless explicitly opted out)
- Requires internet connection
- Subject to service outages and rate limits
The Solution: Local-First Architecture
Project Aeon uses a completely local stack:
┌─────────────┐
│ Vue 3 UI │
└──────┬──────┘
│
┌──────▼──────┐
│ FastAPI │ ◄─── Local API Server
└──────┬──────┘
│
┌───┴────┐
│ │
┌──▼──┐ ┌─▼────┐
│Ollama│ │ChromaDB│ ◄─── Vector Database
└──────┘ └───────┘ Core Components
1. FastAPI Backend
FastAPI provides a modern, async Python framework perfect for AI applications:
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import chromadb
from sentence_transformers import SentenceTransformer
app = FastAPI()
chroma_client = chromadb.Client()
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
class QueryRequest(BaseModel):
query: str
n_results: int = 5
@app.post("/semantic-search")
async def search(request: QueryRequest):
try:
# Generate query embedding
query_embedding = embedding_model.encode([request.query])
# Search vector database
collection = chroma_client.get_collection("knowledge_base")
results = collection.query(
query_embeddings=query_embedding.tolist(),
n_results=request.n_results
)
return {"results": results}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e)) 2. ChromaDB for Semantic Search
ChromaDB enables Retrieval-Augmented Generation (RAG) by storing and retrieving relevant context:
import chromadb
from chromadb.config import Settings
# Initialize ChromaDB with persistent storage
client = chromadb.Client(Settings(
chroma_db_impl="duckdb+parquet",
persist_directory="./chroma_data"
))
# Create collection
collection = client.create_collection(
name="knowledge_base",
metadata={"description": "Personal knowledge base"}
)
# Add documents
collection.add(
documents=["Document content here..."],
metadatas=[{"source": "notes.md", "date": "2025-10-25"}],
ids=["doc1"]
) 3. Local LLM with Ollama
Ollama makes running LLMs locally simple:
import requests
def generate_response(prompt: str, context: list[str]) -> str:
# Construct prompt with retrieved context
full_prompt = f"""Context:
{chr(10).join(context)}
Question: {prompt}
Answer based on the context above:"""
# Call local Ollama instance
response = requests.post(
"http://localhost:11434/api/generate",
json={
"model": "llama2",
"prompt": full_prompt,
"stream": False
}
)
return response.json()["response"] Benefits of This Approach
Complete Privacy
- Zero data leaves your machine
- No telemetry or tracking
- Full control over your information
Offline Capability
- Works without internet
- No dependency on external services
- Consistent performance
Customization
- Fine-tune models on your data
- Customize system prompts
- Integrate with local tools and workflows
Cost-Effective
- No API costs
- One-time hardware investment
- Unlimited usage
Performance Considerations
Running AI locally requires adequate hardware:
Minimum Requirements
- CPU: Modern multi-core processor (8+ cores recommended)
- RAM: 16GB minimum, 32GB recommended
- Storage: NVMe SSD for fast embeddings retrieval
- GPU: Optional but highly recommended (8GB+ VRAM)
Optimization Techniques
- Model Quantization: Use 4-bit or 8-bit quantized models
- Batch Processing: Process multiple queries together
- Caching: Cache frequently accessed embeddings
- Streaming: Stream responses for better UX
Real-World Use Cases
I use Project Aeon for:
- Code review and refactoring suggestions
- Research assistance with my notes and papers
- Learning new technologies with personalized explanations
- Documentation search across my projects
Next Steps
Future enhancements planned:
- Multi-modal support (images, audio)
- Integration with development tools
- Automated knowledge base updates
- Fine-tuning on domain-specific data
Conclusion
Building local AI systems is more accessible than ever. With tools like FastAPI, ChromaDB, and Ollama, you can create powerful, privacy-preserving AI assistants tailored to your needs.
The future of AI doesn’t have to mean sacrificing privacy. By running models locally, we can have both powerful AI capabilities and complete control over our data.
Want to learn more? The Project Aeon repository is coming soon. Feel free to reach out on Twitter for updates.
Building Privacy-First Local AI Systems (mock blog post)
October 25, 2025 • 3 min read
Exploring the architecture and implementation of local AI assistants using ChromaDB, FastAPI, and Ollama for complete data privacy.

Building Privacy-First Local AI Systems
In an era where data privacy is paramount, building AI systems that run entirely on your local machine offers both security and control. This post explores the architecture behind Project Aeon, my local AI assistant that never sends your data to external servers.
The Privacy Problem
Traditional AI assistants like ChatGPT, Claude, and Gemini are powerful but come with privacy trade-offs:
- Your conversations are sent to external servers
- Data might be used for training (unless explicitly opted out)
- Requires internet connection
- Subject to service outages and rate limits
The Solution: Local-First Architecture
Project Aeon uses a completely local stack:
┌─────────────┐
│ Vue 3 UI │
└──────┬──────┘
│
┌──────▼──────┐
│ FastAPI │ ◄─── Local API Server
└──────┬──────┘
│
┌───┴────┐
│ │
┌──▼──┐ ┌─▼────┐
│Ollama│ │ChromaDB│ ◄─── Vector Database
└──────┘ └───────┘ Core Components
1. FastAPI Backend
FastAPI provides a modern, async Python framework perfect for AI applications:
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import chromadb
from sentence_transformers import SentenceTransformer
app = FastAPI()
chroma_client = chromadb.Client()
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
class QueryRequest(BaseModel):
query: str
n_results: int = 5
@app.post("/semantic-search")
async def search(request: QueryRequest):
try:
# Generate query embedding
query_embedding = embedding_model.encode([request.query])
# Search vector database
collection = chroma_client.get_collection("knowledge_base")
results = collection.query(
query_embeddings=query_embedding.tolist(),
n_results=request.n_results
)
return {"results": results}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e)) 2. ChromaDB for Semantic Search
ChromaDB enables Retrieval-Augmented Generation (RAG) by storing and retrieving relevant context:
import chromadb
from chromadb.config import Settings
# Initialize ChromaDB with persistent storage
client = chromadb.Client(Settings(
chroma_db_impl="duckdb+parquet",
persist_directory="./chroma_data"
))
# Create collection
collection = client.create_collection(
name="knowledge_base",
metadata={"description": "Personal knowledge base"}
)
# Add documents
collection.add(
documents=["Document content here..."],
metadatas=[{"source": "notes.md", "date": "2025-10-25"}],
ids=["doc1"]
) 3. Local LLM with Ollama
Ollama makes running LLMs locally simple:
import requests
def generate_response(prompt: str, context: list[str]) -> str:
# Construct prompt with retrieved context
full_prompt = f"""Context:
{chr(10).join(context)}
Question: {prompt}
Answer based on the context above:"""
# Call local Ollama instance
response = requests.post(
"http://localhost:11434/api/generate",
json={
"model": "llama2",
"prompt": full_prompt,
"stream": False
}
)
return response.json()["response"] Benefits of This Approach
Complete Privacy
- Zero data leaves your machine
- No telemetry or tracking
- Full control over your information
Offline Capability
- Works without internet
- No dependency on external services
- Consistent performance
Customization
- Fine-tune models on your data
- Customize system prompts
- Integrate with local tools and workflows
Cost-Effective
- No API costs
- One-time hardware investment
- Unlimited usage
Performance Considerations
Running AI locally requires adequate hardware:
Minimum Requirements
- CPU: Modern multi-core processor (8+ cores recommended)
- RAM: 16GB minimum, 32GB recommended
- Storage: NVMe SSD for fast embeddings retrieval
- GPU: Optional but highly recommended (8GB+ VRAM)
Optimization Techniques
- Model Quantization: Use 4-bit or 8-bit quantized models
- Batch Processing: Process multiple queries together
- Caching: Cache frequently accessed embeddings
- Streaming: Stream responses for better UX
Real-World Use Cases
I use Project Aeon for:
- Code review and refactoring suggestions
- Research assistance with my notes and papers
- Learning new technologies with personalized explanations
- Documentation search across my projects
Next Steps
Future enhancements planned:
- Multi-modal support (images, audio)
- Integration with development tools
- Automated knowledge base updates
- Fine-tuning on domain-specific data
Conclusion
Building local AI systems is more accessible than ever. With tools like FastAPI, ChromaDB, and Ollama, you can create powerful, privacy-preserving AI assistants tailored to your needs.
The future of AI doesn’t have to mean sacrificing privacy. By running models locally, we can have both powerful AI capabilities and complete control over our data.
Want to learn more? The Project Aeon repository is coming soon. Feel free to reach out on Twitter for updates.